
CMSC445 Compiler design Blaheta

Project 2: Lexer
Due: 15 February 2012

In this project we’ll actually get started on our C compiler; we’ll use flex

to process a C program into a stream of tokens (not just lexemes) which will
later serve as input into a parser.

1 Getting started with flex

This section will give you a starter file and (together with §3.5 in the book)
the bare minimum of information about flex that you’ll need to work on
this project. If you have it, now would be the time to begin consulting the
flex & bison book.

1.1 Basic flex

Although traditionally written with C as the target language, modern flex

code can be written to target C++; but much of the sample “getting started”
code still has C in mind. So here’s a really basic flex program just to illus-
trate the general form and its usage. Type in the following file as sample.ll:

%option c++

%option noyywrap

%%

\"[^\"\t\n]+\" { printf ("STR"); }

[a-zA-Z0-9_]+ { printf ("IDENT"); }

%%

int main()

{

FlexLexer *sample = new yyFlexLexer();

sample->yylex();

return 0;

}

If you run

CMSC445 Project 2: Lexer 15 February 2012

flex -oflexlexer.cpp sample.ll

it will create a (complete!) C++ program which it places in the file flexlexer.cpp.
You can compile that file in the perfectly usual way:

g++ flexlexer.cpp -o lexer

(You probably want to keep track of all that in a Makefile; there will be
more later.) The resulting lexer program will read from standard input
and write to standard output, and if you redirect a small file in there (or
just type into it) you’ll find that any quoted string is replaced by STR, and
any other word or number is replaced by IDENT. The highlights:

• The %options say that we are targeting C++ and that we don’t want
to wrap to subsequent files.

• Any character that isn’t part of a match to any rule in the rules section
is just echoed to the output.

• Once yylex is called, it keeps going, trying to match input against
rules, and when it matches, it executes the corresponding code.

• The yyFlexLexer class, a subclass of the abstract FlexLexer class, is
automatically defined for you.

As a first attempt at tweaking a flex program, try modifying this one to
print NUM instead of IDENT when the “identifier” is just a string of digits.

1.2 Using flex to generate tokens

That program is really just a regex-based transformer1; one call to yylex

sends it on its merry way, with no further intervention. What we want,
though, is a program that will return a token stream. For historical reasons,
the “stream” here involves successive calls to the same yylex method, each
one producing the next token; and for other historical reasons, the return
value is an int (the token id) but the other information (i.e. the string that
was matched) is provided through a separate function. The upshot of this
is that you have to do a little extra work to assemble the parts of the token.

Type in the following file as sample2.ll:

1Specifically, it is a form of finite-state transducer.

2

CMSC445 Project 2: Lexer 15 February 2012

%option c++

%option noyywrap

%{

#define ID 401

#define STR 402

#define NUM 403

#define OTHER 404

#include <fstream>

%}

%%

\"[^\"\t\n]+\" { return STR; }

[a-zA-Z0-9_]+ { return ID; }

[^ \t\n]+ { return OTHER; }

%%

int main(int argc, char *argv[])

{

std::ifstream src_in (argv[1]);

FlexLexer *tokstream = new yyFlexLexer(&src_in);

int tok;

while ((tok = tokstream->yylex()) != 0)

printf ("%d:%s ", tok, tokstream->YYText());

return 0;

}

As before, run flex to generate the lexer’s C++ form, and then compile that
and try it out. The burden of output has shifted into the main function;
what is left in the rules section is only brief code to decide what token id to
return. Some more highlights:

• There is no special significance to the numbers 401, 402,. . . , except
that they’re less likely to be confused with naturally-arising values in
the source code.

• An alternate constructor for the lexer class accepts a pointer to an
istream, which lets you read from a file or stringstream. (In practice,
you might still want to use the other one for reasons I’ll explain later,
but I wanted to show you this.)

• The yylex method returns zero when the end of input is reached.

• After yylex has been run (and until the next time it is run), acces-
sor methods of the lexer class let you get at other token attributes.

3

CMSC445 Project 2: Lexer 15 February 2012

Notably, the YYText() method gives the actual matched text; but BE-
WARE: it returns a char * that is only good until yylex is next called!
If you need to hang on to this value, you need to copy it yourself (e.g.
by making a string).

Tweak this one too, first by adding in your changes that recognise numbers
(and returning the NUM token for them); and then to ensure that every
character of the input gets matched against some rule (so that it doesn’t
echo to the output). Remember that not every rule has to return a token—
this will be important if you want to skip whitespace without printing or
making a corresponding token.

1.3 State within the lexer

The traditional way to pass additional information out of yylex and main-
tain state between calls was to just use a lot of global variables; easy in some
ways, but it has the disadvantage of being hard to keep track of, and since
it’s not “re-entrant” you can’t use multiple lexers in the same program or
do anything in parallel. It’s also not very C++ish.

This third version of the sample lexer will pull a couple tricks to let us use
our more sophisticated C++ techniques (encapsulation, instance variables)
with the code generated by flex. First, edit a new file named lexer.h and
type in the following:

#ifndef _LEXER_H_

#define _LEXER_H_

#ifndef __FLEX_LEXER_H

#include <FlexLexer.h>

#endif

class SampleLexer : public yyFlexLexer

{

public:

virtual int yylex ();

int get_lineno() const;

private:

int lineno;

};

#endif

4

CMSC445 Project 2: Lexer 15 February 2012

In most respects this is a typical header file declaring a typical C++ class.
The header it includes comes with flex and is already installed for you in
/usr/include/. The class you define is a derived subclass of the lexer class
that is autogenerated by flex.

Next, create a file lexer.cpp as follows:

#include "lexer.h"

#include <cstdio>

using namespace std;

int SampleLexer::get_lineno() const

{

return lineno;

}

int main ()

{

SampleLexer *tokstream = new SampleLexer();

int tok;

while ((tok = tokstream->yylex()) != 0)

{

printf ("%d:%s:%d ", tok, tokstream->YYText(), tokstream->get_lineno());

}

return 0;

}

The main function you define here is nearly the same as the one from
sample2.ll, and you can pull that version into the file if you like—the
primary changes are in printing the line number, and in how the lexer is
constructed.

Finally, copy sample2.ll into a new file sample3.ll and modify it by
adding the following two lines to the top group of definitions:

#define YY_DECL int SampleLexer::yylex()

#include "lexer.h"

Then add a rule that matches \n and executes the code { ++lineno; } and
finally, remove main and replace it with

int yyFlexLexer::yylex()

{

return -1; // never called; should call derived version

}

5

CMSC445 Project 2: Lexer 15 February 2012

The trick of the thing comes in the YY DECL macro; the main function that
flex autogenerates will have as its function header whatever you provide in
this macro. What that means in this case is that although everything else in
the autogenerated autolexer.cpp file has to do with the autogenerated class
yyFlexLexer, you have fooled flex into defining its workhorse yylex as a
method of your derived class, where it—and therefore any code executed by
a rule—has access to read and/or modify any of the derived class’s instance
variables and methods.

Since the autogenerated code will no longer include a definition for the
promised yylex method of yyFlexLexer, we have to provide a dummy body
for that method (which will, however, never be called, since anyone making
a yyFlexLexer will actually be making a SampleLexer).

The trick in this section can be used to arbitrarily expand what your rule
code can do and store; in particular, this will be an important mechanism
that will let you keep track of your symbol table. Just create the table when
the lexer is constructed, and update it when the appropriate rules fire.

As an aside, once you have autogenerated lexer code (autolexer.cpp) and
hand-written lexer code (lexer.cpp) side-by-side in your directory, you need
to be somewhat careful not to overwrite your code with a careless -o option!
Makefiles are a great idea on a project like this.

2 Lexing C

At this point, your job is to convert the input (a character stream) into an
output (token stream) that is tailored specifically to being useful input to
the parser. That means distinguishing anything that the syntax relies on,
although you can group together elements that behave identically with re-
spect to syntax trees. (The assignment operators are a great candidate for
this sort of thing.) Note that by common convention, terminals that corre-
spond to single-character operators are usually assigned the ASCII value of
that character as their id. (So the terminal label returned when the match
is "+" would be ’+’.) If you do this, make sure that none of your other
terminal labels overlap this ASCII range.

Here is a complete list of punctuation used in operators in C (from p19 of
the C book):

6

CMSC445 Project 2: Lexer 15 February 2012

(

)

[

]

->

.

!

~

++

--

+

-

*

&

/

%

<<

>>

<

<=

>

>=

==

!=

&

^

|

&&

||

?

:

=

+=

-=

*=

/=

%=

&=

^=

|=

<<=

>>=

,

plus three lexemes that are not operators but figure into the grammar: {

(left curly), } (right curly), and ... (ellipsis).

You will also need to recognise identifiers and reserved words. The following
is the complete list of reserved words in C99 (per the list on p7 of the C
book):

auto

break

case

char

const

continue

default

do

double

else

enum

extern

float

for

goto

if

inline

int

long

register

restrict

return

short

signed

sizeof

static

struct

switch

typedef

union

unsigned

void

volatile

while

Bool

Complex

Imaginary

In addition to those, you’ll need to recognise four kinds of literals:

Integer. You should recognise integer literals in base 8, 10, and 16; the
value to be stored should be the appropriate integer (e.g. for 0x23 the
value stored should be the same as for 35 and for 043). You should
recognise the suffixes L, LL, and U, and their lowercase counterparts.

Floating point. You should recognise floating point literals whether they
have a decimal point or an exponent, or both. Again, the value to be
stored should be the appropriate double value. Note that the exponent
marker can be E or P (or their lowercase versions).

Character. The value that will be stored for a character literal will be the
integer value of the character. Note that a newline will probably be
entered as ’\n’ but should be stored as 10 (i.e. the ASCII for linefeed);
and likewise for the other special characters.

7

CMSC445 Project 2: Lexer 15 February 2012

String. The value to be stored for a string literal will be an integer index
into a string table (which is similar to, but not the same as, the symbol
table). If the same string appears more than once in a file, it should
get the same index each time, just like for identifiers.

The final thing you need to recognise is a special: lines that begin with a
hash mark (#) are not C code per se but notes to the compiler. Pull these
off the input stream and create a special token with the full contents of the
line.

Many tokens will thus have two parts, just as we’ve discussed in class: a
terminal label, and a semantic value indicating which instance of that termi-
nal the token represents. Rather than returning it as a pair, flex is set up
to only return the terminal label; you are responsible for updating instance
variables so that a subsequent call to a semantic int() method (which you
will have to define) will return the associated number. The interpretation of
that semantic value will vary, of course; for an integer literal the value will
be the actual value, while for an identifier it will be an index into a symbol
table.

3 Expected output

The main task of this project is producing the lexer itself, which will eventu-
ally drop in to the pipeline and produce output for the parser; but for now,
for purposes of testing and evaluation, you should have it output a table.
Each line corresponds to a single token, and contains three columns.

The first column contains the terminal label for the token. The second col-
umn contains the string that matched; in many cases this will be redundant,
but in many cases it’s open-ended (e.g. with identifiers). The third column
contains the semantic value associated with the string that was matched,
whether that is a table index, or just a number, or whatever.

For instance, output on a simple C file might begin as follows:

IDENT "int" 1

IDENT "main" 2

’(’ "("

’)’ ")"

IDENT "int" 1

8

CMSC445 Project 2: Lexer 15 February 2012

IDENT "n" 3

’=’ "="

INTLIT "3" 3

’;’ ";"

It does not have to look exactly like this, but the format should be clear and
documented.

3.1 Context and subsetting and extras

The actual input to the lexer in real life wouldn’t be a C file itself, but the
output of the C preprocessor. That’s why you don’t have to worry about
comments. You can run it by hand; if you type

cpp testfile.c

the preprocessor does its thing and sends the result to standard output. If
your lexer reads from standard input, you can just pipe it right through:

cpp testfile.c | lexer

The output from the lexer will, eventually, become the input to the parser.
There will be a little tweaking, but for the most part you’ll be able to use
your yylex without change when we build a parser. (In fact, one reason
we’re not modifying yylex itself to return the entire token pair is because
that would break the connection with the autogenerated parser; parsers
produced by yacc and bison expect to call llval, get a terminal label, and
only then ask for the semantic value associated with it.

All the above is specified with respect to the full C language, whole and
entire. Some of it we may never get around to implementing, but lexing an
additional type of terminal label adds little marginal work to this project.
Still, there are a few things that are a bit of a pain to get just right, and
you don’t have to worry about them.

• Keeping track of the suffixes for the number literals.

• Computing the actual value of all forms of floating point literals (in-
cluding exponentiated ones).

9

CMSC445 Project 2: Lexer 15 February 2012

• Handling numeric escapes in character and string literals.

Getting the octal and hex values is not as difficult as you might think—see
strtod.

The “other” line type gives rise to an important extra, if you have time. It’s
not part of the C language proper, but part of the output of the preprocessor,
and they correspond to where there used to be #include lines, to tell which
line of which source file we’ve just switched to. This is crucial information if
you plan to write helpful error messages! So while you don’t have to process
these (just get them and then throw them out) if your goal is just compiling,
it’s a useful extra to process them meaningfully and have them affect lineno
and so on.

4 Handing in, etc

On torvalds, type

handin cmsc445 proj2 lexerdir/

to hand in your entire lexerdir directory. Be sure to include a readme with
any notes I’ll need, and your Makefile if you have one.

I should probably mention that the general structure of the project, and
the first example lex file, were inspired by a project I did when I took a
compilers class at Brown. I’d like to say the rest of it was inspired by all the
various websites I’ve looked at with descriptions on how flex can work with
C++, but quite frankly, half of them contradict each other and/or document
out-of-date versions, so that’s rather more my own.

10

