Don Blaheta

Committee: Eugene Charniak (Advisor) Mark Johnson (Cog. & Ling. Sciences) Michael Collins (MIT Dept. of EE/CS)

6 August 2003

Function Tagging Some types of markup

- Sentence segmentation
- Part of speech tagging
- Parse structure
- Phrase labelling
- Coreference annotation
- Named entity classification
- Function tagging

Function tags

A *function tag* is an annotation, chosen from a relatively small, discrete set of possible annotations, that is placed on a phrase to indicate that phrase's relationship to the rest of the utterance that contains it.

- subject vs. object
- topic
- theta role
- modifier (of time, of place, of . . .)

Function tags: example

Function tags: list

		Within Category	All Constits		
Gram	natical		11.2%	Form/	Function
DTV	Dative	.5%	.1%	ADV	Adverbial
LGS	Logical subject	3.0%	.3%	BNF	Benefactive
PRD	Predicate	17.8%	2.0%	DIR	Direction
PUT	'Put' object	.3%	.0%	EXT	Extent
SBJ	Subject	78.5%	8.8%	LOC	Locative
VOC	Vocative	.0%	.0%	MNR	Manner
				NOM	Nominal
				PRP	Purpose
				TMP	Temporal
Misce	llaneous		.12%		
CLF	'lt'-cleft	5.4%	.01%		
HLN	Headline	42.8%	.05%	Topica	lisation
TTL	Title	51.8%	.06%	TPC	Topicalised

All

Constits

7.8%

.9%

.0%

.6%

.3%

2.0%

.5%

.5%

.4%

2.6%

.5%

.5%

Within Category

11.5%

.0%

8.2%

3.2%

25.3%

6.2%

6.8%

5.3%

33.4%

100.0%

Function tags: ambiguity

The volume was turned up by eleven o'clock by John by the DJ's table by 30 decibels by a twist of the knob

Function tags: ambiguity

The volume was turned upby eleven o'clock.Temporalby Johnby JohnLog. Sbj.by the DJ's tableLocativeby 30 decibelsExtentby a twist of the knobManner

A mathematical reduction

needs to be

$$\langle 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, \cdots \rangle \implies 5$$

Features

- Question whose answers come from predefined set
 - Of a person: gender, middle initial, favourite ivy league school
 - Of a class: professor, department

Features

- Question whose answers come from predefined set
 - Of a person: gender, middle initial, favourite ivy league school
 - Of a class: professor, department
- Binary features

Features

- Question whose answers come from predefined set
 - Of a person: gender, middle initial, favourite ivy league school
 - Of a class: professor, department
- Binary features

Favourite ivy league school? Brown

Features

- Question whose answers come from predefined set
 - Of a person: gender, middle initial, favourite ivy league school
 - Of a class: professor, department
- Binary features

Favourite ivy league school? Brown

Fav. ivy is Dartmouth? NoFav. ivy is Harvard? NoFav. ivy is Brown? YesFav. ivy is Cornell? No

Linguistic features

A geometrical interpretation

Linear backoff, Decision tree

Perceptrons

Perceptrons

Perceptrons: naïve

Perceptrons: voted

Perceptrons: averaged

Perceptrons: kernel-based

Perceptrons: kernel-based

Perceptrons: kernel-based

Perceptrons: multi-valued

- *m* "experts" (perceptrons)
- each expert j knows only about tag j
- most confident expert applies his tag

Perceptrons: multi-valued

Perceptrons: training

For each training constituent c_i , whose correct tag is fFor each possible tag j $score_j \leftarrow w_j \cdot c_i$ $a \leftarrow \operatorname{argmax}_j score_j$ if $a \neq f$ (*guessed wrong*) $w_a \leftarrow w_a - c_i$ $w_f \leftarrow w_f + c_i$

Perceptrons: applying

For each testing constituent c_i , For each possible tag j $score_j \leftarrow w_j \cdot c_i$ $a \leftarrow \operatorname{argmax}_j score_j$ return tag a

Perceptron performance

Perceptron performance

SyntacticSemanticNaïve (average $5 \le T \le 20$)97.564.1

Perceptron performance

	Syntactic	Semantic
Naïve (average $5 \le T \le 20$)	97.5	64.1
Voted $(T = 1)$	97.9	66.4

Sparse voting

- Usual definition of voted perceptron:
 - Save all intermediate perceptrons
 - Calculate prediction according to each
 - Use most frequent prediction
- Each epoch = 780K examples \times 20 epochs = 15.6M votes
- Only use 60 or so?

Perceptron performance

	Syntactic	Semantic
Naïve (average $5 \le T \le 20$)	97.5	64.1
Voted $(T = 1)$	97.9	66.4
Sparse voted ($5 \le T \le 20$)	98.5	69.1

Perceptron performance

	Syntactic	Semantic
Naïve (average $5 \le T \le 20$)	97.5	64.1
Voted $(T = 1)$	97.9	66.4
Sparse voted ($5 \le T \le 20$)	98.5	69.1
Kernel ($T = 1; d = 2$)	97.5	78.0
Kernel voted ($T = 1; d = 2$)	98.4	77.3

Perceptron performance

			11	me
	Syntactic	Semantic	train	test
Naïve (average $5 \le T \le 20$)	97.5	64.1	55m	7s
Voted $(T = 1)$	97.9	66.4	3m	1h/13h
Sparse voted ($5 \le T \le 20$)	98.5	69.1	55m	7m
Kernel ($T = 1; d = 2$)	97.5	78.0		
Kernel voted ($T = 1; d = 2$)	98.4	77.3		

• 27K non-terminal constituents; 1300 sentences; 33K words

• at 120wpm, 4.5 hours of text

Perceptron performance

			Tin	ne
	Syntactic	Semantic	train	test
Naïve (average $5 \le T \le 20$)	97.5	64.1	55m	7s
Voted $(T = 1)$	97.9	66.4	3m	1h/13h
Sparse voted ($5 \le T \le 20$)	98.5	69.1	55m	7m
Kernel ($T = 1; d = 2$)	97.5	78.0	15h/10d	1h/0h
Kernel voted ($T = 1; d = 2$)	98.4	77.3		111/911

• 27K non-terminal constituents; 1300 sentences; 33K words

• at 120wpm, 4.5 hours of text

Function Tagging Feature set performance

	Syntactic	Semantic
self	40.5	52.9
self+parent's label	90.8	61.2
self+parent	96.6	68.3
self+sibs	94.5	64.8
self+parent+sibs	97.9	69.9
<pre>self+parent+sibs+gp (basic)</pre>	98.6	68.7
basic+sm/sy	98.7	69.1
basic+parent's sm	98.5	69.3
basic+twosib labels	98.7	70.0
basic+alt	98.5	77.6
basic+sm/sy+p's sm+2sib+alt (full)	98.8	78.5
full — lex	95.7	49.2

Final results

Syntactic tags	Precision	Recall	F-measure
(Blaheta&Charniak, 2000)	95.5%	95.9%	95.7%
Later feature trees	96.5%	95.3%	95.9%
Sparse voted perceptron	97.0%	95.7%	96.4%

Semantic tags	Precision	Recall	F-measure
(Blaheta&Charniak, 2000)	80.4%	77.6%	79.0%
Later feature trees	86.7%	80.3%	83.4%
Sparse voted perceptron	88.7%	79.4%	83.8%

System comparison

Feature trees Faster to train and run Perceptrons Slower but comparable

System comparison

Feature trees Faster to train and run

Uses for language modelling No probability distribution

Perceptrons

Slower but comparable

System comparison

Feature trees

Faster to train and run Uses for language modelling Hard to add new features

Perceptrons

Slower but comparable No probability distribution New features: just add and retrain

System comparison

Feature trees

Faster to train and run Uses for language modelling Hard to add new features Complicated algorithm

Perceptrons

Slower but comparable No probability distribution New features: just add and retrain Fast and easy to implement

System comparison

Feature trees

Faster to train and run Uses for language modelling Hard to add new features Complicated algorithm Fairly accurate

Perceptrons

Slower but comparable No probability distribution New features: just add and retrain Fast and easy to implement Slightly more accurate

Contributions

- Tagger for semantic modifiers
- More accurate tagger for syntactic modifiers
- Comparison of several systems on function tagging task
- New features
- Analysis of important features
- Sparse voted perceptron, counting votes for T>5 only

Future work

- Re-try averaged perceptron
- Cluster/backoff features
- German NEGRA corpus—syntactic; Penn-style
- Czech PDT corpus—syntactic and semantic; different linguistic model
- Applications: Question answering, machine translation

Thanks

• Any questions?

Related work: Collins 1997

- Parsing can be improved with complement/adjunct knowledge
- Function tags are used to indicate this
 - e.g. SBJ is complement, TMP is adjunct
- Results reported only on parser quality

Related work: Gildea and Jurafsky 2000

- FrameNet corpus project
- Composed primarily of "frames" of discourse, e.g. conversation
- Phrases tagged as "frame elements", e.g. TOPIC, MEDIUM
- Every frame has different frame elements
- Both harder and easier; difficult to compare

Related work: Gildea and Jurafsky 2000

- FrameNet corpus
 - Domain: communication (cognition, motion)
 - Frame: conversation (statement, judgement)
 - Words: argue, debate, discussion, tiff
 - Frame elements: Protagonist, Topic, Medium
- Probabilistic, with lattice backoff model
- Given a sentence with marked frame elements, label them: 81.2%
- Given a sentence, mark frame elements: 66% (+ 15% partial)

Related work: Brants, Skut, and Krenn 1997

- German-language treebank from POS-tagged newspaper text
- Every item has "function label" e.g. SB, HD
- Order-2 Markov model, one per parent label type

Brants, Skut, and	Krenn	Blaheta	
PP children	97.9%	No-null precision	96.5%
S children	89.1%	No-null recall	95.3%
Overall accuracy	94.2%	No-null F-measure	95.9%
		With-null accuracy	99.0%

Feature trees

- In the 'chain', each 'link' expresses a dependency relationship. What if some terms are independent?
- Each independence assumption causes a fork in the chain, yielding a feature *tree*.

Figure 1: A feature tree: d is independent of b and c

A feature tree

Feature chains, technical

If a feature f can be guessed from features f_1, \ldots, f_n , we usually estimate its probability as

$$P(f|f_1, f_2, \ldots, f_n) \approx \hat{P}(f|f_1, f_2, \ldots, f_j), \quad j \leq n.$$

This is equivalent to

$$P(f|f_1, f_2, \dots, f_n) \approx \hat{P}(f) \frac{\hat{P}(f|f_1)}{\hat{P}(f)} \frac{\hat{P}(f|f_1, f_2)}{\hat{P}(f|f_1)} \cdots \frac{\hat{P}(f|f_1, f_2, \dots, f_j)}{\hat{P}(f|f_1, f_2, \dots, f_{j-1})}$$

or

$$P(f|f_1, f_2, \dots, f_n) \approx \prod_{i=0}^j \frac{\hat{P}(f|f_1, \dots, f_{i-1}, f_i)}{\hat{P}(f|f_1, \dots, f_{i-1})}$$

٠

Function Tagging Feature trees, technical

À propos Figure 1, if d were still dependent on c (and we had complete data), the probability estimate would be

$$P(f|a, b, c, d) \approx \hat{P}(f) \frac{\hat{P}(f|a)}{\hat{P}(f)} \frac{\hat{P}(f|a)}{\hat{P}(f|a)} \frac{\hat{P}(f|a, b)}{\hat{P}(f|a)} \frac{\hat{P}(f|a, b, c)}{\hat{P}(f|a, b)} \frac{\hat{P}(f|a, b, c, d)}{\hat{P}(f|a, b, c)}$$

Noting d's independence from b and c, this becomes

$$P(f|a, b, c, d) \approx \hat{P}(f) \frac{\hat{P}(f|a)}{\hat{P}(f)} \frac{\hat{P}(f|a)}{\hat{P}(f|a)} \frac{\hat{P}(f|a, b)}{\hat{P}(f|a)} \frac{\hat{P}(f|a, b, c)}{\hat{P}(f|a, b)} \frac{\hat{P}(f|a, d)}{\hat{P}(f|a)} ,$$

which cancels to

$$P(f|a, b, c, d) \approx \frac{P(f|a, b, c)P(f|a, d)}{P(f|a)}$$

Error analysis

Parser error	20%
Type A, B error	18%
Type C error	13%
Dubious	6%
Algorithm error	44%

Outside sources of error I: Parser error

Outside sources of error II: Treebank error

- Type A: Detectable
 - LGS "attaches to the NP object of by and not to the PP node."
 - "President Bush has been weakened by the Panama fiasco."
- Type B: Fixable
 - LOC can be metaphorical, but not idiomatic
 - "think *about national service*" shouldn't be LOC
- Type C: Inconsistent
 - MNR indicates the manner in which an action is performed
 - "impatiently", "suddenly", "significantly", "clearly"